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2.5 Elementary Matrices

It is now clear that elementary row operations are important in linear algebra: They are essential
in solving linear systems (using the gaussian algorithm) and in inverting a matrix (using the ma-
trix inversion algorithm). It turns out that they can be performed by left multiplying by certain
invertible matrices. These matrices are the subject of this section.

Definition 2.12 Elementary Matrices

An n×n matrix E is called an elementary matrix if it can be obtained from the identity
matrix In by a single elementary row operation (called the operation corresponding to E).
We say that E is of type I, II, or III if the operation is of that type (see Definition 1.2).

Hence
E1 =

[
0 1
1 0

]
, E2 =

[
1 0
0 9

]
, and E3 =

[
1 5
0 1

]
are elementary of types I, II, and III, respectively, obtained from the 2× 2 identity matrix by
interchanging rows 1 and 2, multiplying row 2 by 9, and adding 5 times row 2 to row 1.

Suppose now that the matrix A=

[
a b c
p q r

]
is left multiplied by the above elementary matrices

E1, E2, and E3. The results are:

E1A =

[
0 1
1 0

][
a b c
p q r

]
=

[
p q r
a b c

]
E2A =

[
1 0
0 9

][
a b c
p q r

]
=

[
a b c

9p 9q 9r

]
E3A =

[
1 5
0 1

][
a b c
p q r

]
=

[
a+5p b+5q c+5r

p q r

]
In each case, left multiplying A by the elementary matrix has the same effect as doing the corre-
sponding row operation to A. This works in general.

Lemma 2.5.1: 10

If an elementary row operation is performed on an m×n matrix A, the result is EA where E
is the elementary matrix obtained by performing the same operation on the m×m identity
matrix.

Proof. We prove it for operations of type III; the proofs for types I and II are left as exercises. Let
E be the elementary matrix corresponding to the operation that adds k times row p to row q 6= p.
The proof depends on the fact that each row of EA is equal to the corresponding row of E times

10A lemma is an auxiliary theorem used in the proof of other theorems.
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A. Let K1, K2, . . . , Km denote the rows of Im. Then row i of E is Ki if i 6= q, while row q of E is
Kq + kKp. Hence:

If i 6= q then row i of EA = KiA = (row i of A).
Row q of EA = (Kq + kKp)A = KqA+ k(KpA)

= (row q of A) plus k (row p of A).

Thus EA is the result of adding k times row p of A to row q, as required.

The effect of an elementary row operation can be reversed by another such operation (called its
inverse) which is also elementary of the same type (see the discussion following (Example 1.1.3).
It follows that each elementary matrix E is invertible. In fact, if a row operation on I produces E,
then the inverse operation carries E back to I. If F is the elementary matrix corresponding to the
inverse operation, this means FE = I (by Lemma 2.5.1). Thus F = E−1 and we have proved

Lemma 2.5.2
Every elementary matrix E is invertible, and E−1 is also a elementary matrix (of the same
type). Moreover, E−1 corresponds to the inverse of the row operation that produces E.

The following table gives the inverse of each type of elementary row operation:

Type Operation Inverse Operation
I Interchange rows p and q Interchange rows p and q
II Multiply row p by k 6= 0 Multiply row p by 1/k, k 6= 0
III Add k times row p to row q 6= p Subtract k times row p from row q, q 6= p

Note that elementary matrices of type I are self-inverse.

Example 2.5.1

Find the inverse of each of the elementary matrices

E1 =

 0 1 0
1 0 0
0 0 1

 , E2 =

 1 0 0
0 1 0
0 0 9

 , and E3 =

 1 0 5
0 1 0
0 0 1

 .

Solution. E1, E2, and E3 are of type I, II, and III respectively, so the table gives

E−1
1 =

 0 1 0
1 0 0
0 0 1

= E1, E−1
2 =

 1 0 0
0 1 0
0 0 1

9

 , and E−1
3 =

 1 0 −5
0 1 0
0 0 1

 .
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Inverses and Elementary Matrices

Suppose that an m×n matrix A is carried to a matrix B (written A → B) by a series of k elementary
row operations. Let E1, E2, . . . , Ek denote the corresponding elementary matrices. By Lemma 2.5.1,
the reduction becomes

A → E1A → E2E1A → E3E2E1A → ··· → EkEk−1 · · ·E2E1A = B

In other words,
A →UA = B where U = EkEk−1 · · ·E2E1

The matrix U =EkEk−1 · · ·E2E1 is invertible, being a product of invertible matrices by Lemma 2.5.2.
Moreover, U can be computed without finding the Ei as follows: If the above series of operations
carrying A → B is performed on Im in place of A, the result is Im → UIm = U . Hence this series of
operations carries the block matrix

[
A Im

]
→

[
B U

]
. This, together with the above discussion,

proves

Theorem 2.5.1
Suppose A is m×n and A → B by elementary row operations.

1. B =UA where U is an m×m invertible matrix.

2. U can be computed by
[

A Im
]
→

[
B U

]
using the operations carrying A → B.

3. U = EkEk−1 · · ·E2E1 where E1, E2, . . . , Ek are the elementary matrices corresponding
(in order) to the elementary row operations carrying A to B.

Example 2.5.2

If A =

[
2 3 1
1 2 1

]
, express the reduced row-echelon form R of A as R =UA where U is

invertible.

Solution. Reduce the double matrix
[

A I
]
→

[
R U

]
as follows:

[
A I

]
=

[
2 3 1 1 0
1 2 1 0 1

]
→

[
1 2 1 0 1
2 3 1 1 0

]
→

[
1 2 1 0 1
0 −1 −1 1 −2

]
→

[
1 0 −1 2 −3
0 1 1 −1 2

]

Hence R =

[
1 0 −1
0 1 1

]
and U =

[
2 −3

−1 2

]
.

Now suppose that A is invertible. We know that A→ I by Theorem 2.4.5, so taking B= I in Theo-
rem 2.5.1 gives

[
A I

]
→

[
I U

]
where I =UA. Thus U =A−1, so we have

[
A I

]
→

[
I A−1 ]

.
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This is the matrix inversion algorithm in Section 2.4. However, more is true: Theorem 2.5.1 gives
A−1 = U = EkEk−1 · · ·E2E1 where E1, E2, . . . , Ek are the elementary matrices corresponding (in
order) to the row operations carrying A → I. Hence

A =
(
A−1)−1

= (EkEk−1 · · ·E2E1)
−1 = E−1

1 E−1
2 · · ·E−1

k−1E−1
k (2.10)

By Lemma 2.5.2, this shows that every invertible matrix A is a product of elementary matrices.
Since elementary matrices are invertible (again by Lemma 2.5.2), this proves the following important
characterization of invertible matrices.

Theorem 2.5.2
A square matrix is invertible if and only if it is a product of elementary matrices.

It follows from Theorem 2.5.1 that A → B by row operations if and only if B = UA for some
invertible matrix B. In this case we say that A and B are row-equivalent. (See Exercise 2.5.17.)

Example 2.5.3

Express A =

[
−2 3

1 0

]
as a product of elementary matrices.

Solution. Using Lemma 2.5.1, the reduction of A → I is as follows:

A =

[
−2 3

1 0

]
→ E1A =

[
1 0

−2 3

]
→ E2E1A =

[
1 0
0 3

]
→ E3E2E1A =

[
1 0
0 1

]
where the corresponding elementary matrices are

E1 =

[
0 1
1 0

]
, E2 =

[
1 0
2 1

]
, E3 =

[
1 0
0 1

3

]
Hence (E3 E2 E1)A = I, so:

A = (E3E2E1)
−1 = E−1

1 E−1
2 E−1

3 =

[
0 1
1 0

][
1 0

−2 1

][
1 0
0 3

]

Smith Normal Form

Let A be an m×n matrix of rank r, and let R be the reduced row-echelon form of A. Theorem 2.5.1
shows that R =UA where U is invertible, and that U can be found from

[
A Im

]
→

[
R U

]
.

The matrix R has r leading ones (since rank A = r) so, as R is reduced, the n×m matrix RT

contains each row of Ir in the first r columns. Thus row operations will carry RT →
[

Ir 0
0 0

]
n×m

.

Hence Theorem 2.5.1 (again) shows that
[

Ir 0
0 0

]
n×m

=U1RT where U1 is an n×n invertible matrix.
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Writing V =UT
1 , we obtain

UAV = RV = RUT
1 =

(
U1RT)T

=

([
Ir 0
0 0

]
n×m

)T

=

[
Ir 0
0 0

]
m×n

Moreover, the matrix U1 =V T can be computed by
[

RT In
]
→

[[
Ir 0
0 0

]
n×m

V T
]
. This proves

Theorem 2.5.3
Let A be an m×n matrix of rank r. There exist invertible matrices U and V of size m×m
and n×n, respectively, such that

UAV =

[
Ir 0
0 0

]
m×n

Moreover, if R is the reduced row-echelon form of A, then:

1. U can be computed by
[

A Im
]
→

[
R U

]
;

2. V can be computed by
[

RT In
]
→

[[
Ir 0
0 0

]
n×m

V T
]
.

If A is an m×n matrix of rank r, the matrix
[

Ir 0
0 0

]
is called the Smith normal form11 of

A. Whereas the reduced row-echelon form of A is the “nicest” matrix to which A can be carried
by row operations, the Smith canonical form is the “nicest” matrix to which A can be carried by
row and column operations. This is because doing row operations to RT amounts to doing column
operations to R and then transposing.

Example 2.5.4

Given A =

 1 −1 1 2
2 −2 1 −1

−1 1 0 3

, find invertible matrices U and V such that

UAV =

[
Ir 0
0 0

]
, where r = rank A.

Solution. The matrix U and the reduced row-echelon form R of A are computed by the row
reduction

[
A I3

]
→

[
R U

]
: 1 −1 1 2 1 0 0

2 −2 1 −1 0 1 0
−1 1 0 3 0 0 1

→

 1 −1 0 −3 −1 1 0
0 0 1 5 2 −1 0
0 0 0 0 −1 1 1


11Named after Henry John Stephen Smith (1826–83).
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Hence

R =

 1 −1 0 −3
0 0 1 5
0 0 0 0

 and U =

 −1 1 0
2 −1 0

−1 1 1


In particular, r = rank R = 2. Now row-reduce

[
RT I4

]
→

[ [
Ir 0
0 0

]
V T

]
:


1 0 0 1 0 0 0

−1 0 0 0 1 0 0
0 1 0 0 0 1 0

−3 5 0 0 0 0 1

→


1 0 0 1 0 0 0
0 1 0 0 0 1 0
0 0 0 1 1 0 0
0 0 0 3 0 −5 1


whence

V T =


1 0 0 0
0 0 1 0
1 1 0 0
3 0 −5 −1

 so V =


1 0 1 3
0 0 1 0
0 1 0 −5
0 0 0 1


Then UAV =

[
I2 0
0 0

]
as is easily verified.

Uniqueness of the Reduced Row-echelon Form

In this short subsection, Theorem 2.5.1 is used to prove the following important theorem.

Theorem 2.5.4
If a matrix A is carried to reduced row-echelon matrices R and S by row operations, then
R = S.

Proof. Observe first that UR = S for some invertible matrix U (by Theorem 2.5.1 there exist
invertible matrices P and Q such that R = PA and S = QA; take U = QP−1). We show that R = S
by induction on the number m of rows of R and S. The case m = 1 is left to the reader. If R j and
S j denote column j in R and S respectively, the fact that UR = S gives

UR j = S j for each j (2.11)

Since U is invertible, this shows that R and S have the same zero columns. Hence, by passing to the
matrices obtained by deleting the zero columns from R and S, we may assume that R and S have
no zero columns.

But then the first column of R and S is the first column of Im because R and S are row-echelon,
so (2.11) shows that the first column of U is column 1 of Im. Now write U , R, and S in block form
as follows.

U =

[
1 X
0 V

]
, R =

[
1 X
0 R′

]
, and S =

[
1 Z
0 S′

]
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Since UR = S, block multiplication gives V R′ = S′ so, since V is invertible (U is invertible) and both
R′ and S′ are reduced row-echelon, we obtain R′ = S′ by induction. Hence R and S have the same
number (say r) of leading 1s, and so both have m–r zero rows.

In fact, R and S have leading ones in the same columns, say r of them. Applying (2.11) to these
columns shows that the first r columns of U are the first r columns of Im. Hence we can write U ,
R, and S in block form as follows:

U =

[
Ir M
0 W

]
, R =

[
R1 R2
0 0

]
, and S =

[
S1 S2
0 0

]
where R1 and S1 are r× r. Then block multiplication gives UR = R; that is, S = R. This completes
the proof.

Exercises for 2.5

Exercise 2.5.1 For each of the following elemen-
tary matrices, describe the corresponding elemen-
tary row operation and write the inverse.

E =

 1 0 3
0 1 0
0 0 1

a) E =

 0 0 1
0 1 0
1 0 0

b)

E =

 1 0 0
0 1

2 0
0 0 1

c) E =

 1 0 0
−2 1 0

0 0 1

d)

E =

 0 1 0
1 0 0
0 0 1

e) E =

 1 0 0
0 1 0
0 0 5

f)

b. Interchange rows 1 and 3 of I. E−1 = E.

d. Add (−2) times row 1 of I to row 2. E−1 = 1 0 0
2 1 0
0 0 1



f. Multiply row 3 of I by 5. E−1 =

 1 0 0
0 1 0
0 0 1

5


Exercise 2.5.2 In each case find an elementary
matrix E such that B = EA.

a. A =

[
2 1
3 −1

]
, B =

[
2 1
1 −2

]

b. A =

[
−1 2

0 1

]
, B =

[
1 −2
0 1

]

c. A =

[
1 1

−1 2

]
, B =

[
−1 2

1 1

]

d. A =

[
4 1
3 2

]
, B =

[
1 −1
3 2

]

e. A =

[
−1 1

1 −1

]
, B =

[
−1 1
−1 1

]

f. A =

[
2 1

−1 3

]
, B =

[
−1 3

2 1

]

b.
[
−1 0

0 1

]

d.
[

1 −1
0 1

]

f.
[

0 1
1 0

]

Exercise 2.5.3 Let A =

[
1 2

−1 1

]
and

C =

[
−1 1

2 1

]
.
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a. Find elementary matrices E1 and E2 such that
C = E2E1A.

b. Show that there is no elementary matrix E
such that C = EA.

b. The only possibilities for E are
[

0 1
1 0

]
,[

k 0
0 1

]
,
[

1 0
0 k

]
,
[

1 k
0 1

]
, and

[
1 0
k 1

]
.

In each case, EA has a row different from C.

Exercise 2.5.4 If E is elementary, show that A and
EA differ in at most two rows.

Exercise 2.5.5

a. Is I an elementary matrix? Explain.

b. Is 0 an elementary matrix? Explain.

b. No, 0 is not invertible.

Exercise 2.5.6 In each case find an invertible ma-
trix U such that UA = R is in reduced row-echelon
form, and express U as a product of elementary ma-
trices.

A =

[
1 −1 2

−2 1 0

]
a) A =

[
1 2 1
5 12 −1

]
b)

A =

 1 2 −1 0
3 1 1 2
1 −3 3 2

c)

A =

 2 1 −1 0
3 −1 2 1
1 −2 3 1

d)

b.
[

1 −2
0 1

][
1 0
0 1

2

][
1 0

−5 1

]
A =

[
1 0 7
0 1 −3

]
. Alternatively,[

1 0
0 1

2

][
1 −1
0 1

][
1 0

−5 1

]
A =

[
1 0 7
0 1 −3

]
.

d.

 1 2 0
0 1 0
0 0 1

 1 0 0
0 1

5 0
0 0 1

 1 0 0
0 1 0
0 −1 1


 1 0 0

0 1 0
−2 0 1

 1 0 0
−3 1 0

0 0 1

  0 0 1
0 1 0
1 0 0

A=
1 0 1

5
1
5

0 1 −7
5 −2

5

0 0 0 0


Exercise 2.5.7 In each case find an invertible ma-
trix U such that UA = B, and express U as a product
of elementary matrices.

a. A =

[
2 1 3

−1 1 2

]
, B =

[
1 −1 −2
3 0 1

]

b. A =

[
2 −1 0
1 1 1

]
, B =

[
3 0 1
2 −1 0

]

b. U =

[
1 1
1 0

]
=

[
1 1
0 1

][
0 1
1 0

]

Exercise 2.5.8 In each case factor A as a product
of elementary matrices.

A =

[
1 1
2 1

]
a) A =

[
2 3
1 2

]
b)

A =

 1 0 2
0 1 1
2 1 6

c) A=

 1 0 −3
0 1 4

−2 2 15

d)

b. A =

[
0 1
1 0

][
1 0
2 1

][
1 0
0 −1

]
[

1 2
0 1

]

d. A =

 1 0 0
0 1 0

−2 0 1

 1 0 0
0 1 0
0 2 1


 1 0 −3

0 1 0
0 0 1

 1 0 0
0 1 4
0 0 1


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Exercise 2.5.9 Let E be an elementary matrix.

a. Show that ET is also elementary of the same
type.

b. Show that ET = E if E is of type I or II.

Exercise 2.5.10 Show that every matrix A can be
factored as A =UR where U is invertible and R is in
reduced row-echelon form.
UA = R by Theorem 2.5.1, so A =U−1R.

Exercise 2.5.11 If A =

[
1 2
1 −3

]
and

B =

[
5 2

−5 −3

]
find an elementary matrix F such

that AF = B. [Hint: See Exercise 2.5.9.]

Exercise 2.5.12 In each case find invertible U and
V such that UAV =

[
Ir 0
0 0

]
, where r = rank A.

A=

[
1 1 −1

−2 −2 4

]
a) A =

[
3 2
2 1

]
b)

A =

 1 −1 2 1
2 −1 0 3
0 1 −4 1

c)

A =

 1 1 0 −1
3 2 1 1
1 0 1 3

d)

b. U = A−1, V = I2; rank A = 2

d. U =

 −2 1 0
3 −1 0
2 −1 1

,

V =


1 0 −1 −3
0 1 1 4
0 0 1 0
0 0 0 1

; rank A = 2

Exercise 2.5.13 Prove Lemma 2.5.1 for elemen-
tary matrices of:

type I;a) type II.b)

Exercise 2.5.14 While trying to invert A,
[

A I
]

is carried to
[

P Q
]

by row operations. Show that
P = QA.

Exercise 2.5.15 If A and B are n×n matrices and
AB is a product of elementary matrices, show that
the same is true of A.

Exercise 2.5.16 If U is invertible, show that the
reduced row-echelon form of a matrix

[
U A

]
is[

I U−1A
]
.

Write U−1 = EkEk−1 · · ·E2E1, Ei elementary. Then[
I U−1A

]
=
[

U−1U U−1A
]

= U−1
[

U A
]
= EkEk−1 · · ·E2E1

[
U A

]
. So[

U A
]
→

[
I U−1A

]
by row operations

(Lemma 2.5.1).

Exercise 2.5.17 Two matrices A and B are called
row-equivalent (written A r∼ B) if there is a se-
quence of elementary row operations carrying A to
B.

a. Show that A r∼B if and only if A=UB for some
invertible matrix U .

b. Show that:

i. A r∼ A for all matrices A.
ii. If A r∼ B, then B r∼ A

iii. If A r∼ B and B r∼C, then A r∼C.

c. Show that, if A and B are both row-equivalent
to some third matrix, then A r∼ B.

d. Show that

 1 −1 3 2
0 1 4 1
1 0 8 6

 and 1 −1 4 5
−2 1 −11 −8
−1 2 2 2

 are row-equivalent.

[Hint: Consider (c) and Theorem 1.2.1.]

b. (i) A r∼ A because A = IA. (ii) If A r∼ B, then
A = UB, U invertible, so B = U−1A. Thus
B r∼ A. (iii) If A r∼ B and B r∼ C, then A = UB
and B = VC, U and V invertible. Hence A =
U(VC) = (UV )C, so A r∼C.

Exercise 2.5.18 If U and V are invertible n× n
matrices, show that U r∼V . (See Exercise 2.5.17.)

Exercise 2.5.19 (See Exercise 2.5.17.) Find all
matrices that are row-equivalent to:
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[
0 0 0
0 0 0

]
a)

[
0 0 0
0 0 1

]
b)[

1 0 0
0 1 0

]
c)

[
1 2 0
0 0 1

]
d)

b. If B r∼ A, let B = UA, U invertible. If U =[
d b

−b d

]
, B = UA =

[
0 0 b
0 0 d

]
where b

and d are not both zero (as U is invert-
ible). Every such matrix B arises in this way:

Use U =

[
a b

−b a

]
–it is invertible by Exam-

ple 2.3.5.

Exercise 2.5.20 Let A and B be m× n and n×m
matrices, respectively. If m > n, show that AB is not
invertible. [Hint: Use Theorem 1.3.1 to find x 6= 0
with Bx = 0.]

Exercise 2.5.21 Define an elementary column op-
eration on a matrix to be one of the following: (I)
Interchange two columns. (II) Multiply a column by
a nonzero scalar. (III) Add a multiple of a column
to another column. Show that:

a. If an elementary column operation is done to
an m× n matrix A, the result is AF , where F
is an n×n elementary matrix.

b. Given any m× n matrix A, there exist m×m
elementary matrices E1, . . . , Ek and n× n el-
ementary matrices F1, . . . , Fp such that, in

block form,

Ek · · ·E1AF1 · · ·Fp =

[
Ir 0
0 0

]

Exercise 2.5.22 Suppose B is obtained from A by:

a. interchanging rows i and j;

b. multiplying row i by k 6= 0;

c. adding k times row i to row j (i 6= j).

In each case describe how to obtain B−1 from
A−1. [Hint: See part (a) of the preceding exer-
cise.]

b. Multiply column i by 1/k.

Exercise 2.5.23 Two m×n matrices A and B are
called equivalent (written A e∼ B) if there exist in-
vertible matrices U and V (sizes m×m and n× n)
such that A =UBV .

a. Prove the following the properties of equiva-
lence.

i. A e∼ A for all m×n matrices A.
ii. If A e∼ B, then B e∼ A.
iii. If A e∼ B and B e∼C, then A e∼C.

b. Prove that two m× n matrices are equivalent
if they have the same rank . [Hint: Use part
(a) and Theorem 2.5.3.]
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